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Based on a waveguide model presented in a companion paper (L. Kari 2001 Journal of
Sound and <ibration 244, 211}233 [1]), the in#uences of higher order modes and
structure-borne sound dispersion on the axial dynamic sti!ness for cylindrical vibration
isolators are investigated. On the whole, a moderate mode number results in an accurate
sti!ness prediction while an accurate stress point value prediction requires more modes. The
dispersion relation is solved by a modi"ed Newton}Raphson method with initial values
given by an asymptotic expansion or a winding integral method. The integral technique is
based on the argument principle; but, as the square root operators in the dispersion relation
yield branch points, some modi"cations are needed. To create single-valued functions
conforming to the argument principle, the winding integral search domain is split into
branch cut absent subdomains, containing adaptively de"ned square root operators. The
subregion method used for the ful"lment of the boundary conditions at the lateral surfaces is
shown to converge faster than for the point-matching method. However, the latter reveals
a similar convergence rate as the former at overdetermination. Comparisons with simple
sti!ness models are made. These models, known as the long rod, the Love, the Bishop, the
Kynch, the Mindlin and Herrmann and the Mindlin and McNiven theories are shown to
diverge substantially from the presented &&exact'' theory. To a great extent, the pertinent
stress and displacement "elds, derived from the presented waveguide model, explain the
discrepancies reported for the approximate theories.
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1. INTRODUCTION

The great variety of commercially available isolators enables the most diverse vibration
isolation problems to be solved, though in many cases custom-designed resilient elements
are applied. In a companion paper [1] a waveguide technique was presented, resulting in
the axial dynamic sti!ness for one of the most common resilient elements: namely, the
circular cylindrical vibration isolator in Figure 1 with bonded end plates. The model and
the measurements are shown to agree strikingly well within the whole frequency range.

A closed-form dynamic sti!ness solution is di$cult, arising from the stress singularities at
the rubber cylinder corners, the complex constitutive relation and the imposed boundary
conditions. In particular, the boundary conditions on the bonded rubber cylinder ends are
locally non-mixed; that is, only the displacement components (present case) or the stress
0022-460X/01/270235#23 $35.00/0 ( 2001 Academic Press



Figure 1. Cylindrical vibration isolator.
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components are speci"ed. This obstructs the modelling, grouping it into a non-separable
category [2].

The most straightforward method is probably by the mode-matching technique as
successfully applied in electric and magnetic waveguide problems [3]. To this end, the axial
dependence is separated, the eigenvalues and eigenmodes of the cross-section are calculated,
where (provided these modes constitute a complete set) the total "eld is obtained by
eigenmode superposition, "nally matching them to the cylinder end boundary conditions.

In the last century Pochhammer [4] and Chree [5] had already developed the dispersion
relations for an in"nite, elastic rod; that is, the axially independent problem, but without
material damping. It took, however, more than 80 years for Onoe et al. [6] to resolve its
complete axial eigenvalue spectrum, mainly by establishing cut-o! frequencies, asymptotic
behaviour and a boundary line grid. This method is not suitable for viscoelastic materials,
such as rubber. In this paper the spectrum is calculated by a modi"ed Newton}Raphson
method [7], with initial values given by an asymptotic expansion or a winding integral
method [8]. The integral technique is based on the argument principle; but, as the square
root operators in the dispersion relation yield branch points, some modi"cations are
needed. To create single-valued functions conforming to the argument principle, the
winding integral search domain is split into branch cut absent subdomains, containing
adaptively de"ned square root operators. The somewhat complicated axial wavenumber
spectrum applies a nearly incompressible material model, with the material parameters
optimized with respect to the calculated and measured isolator transfer sti!ness. The
displacement boundary conditions at the rubber cylinder ends are satis"ed by a circle-wise
ful"lment or a subregion method. In order to fully accept the method, the convergence of
the solution must be examined.

Love [9] points out that the real eigenvalues to the dispersion relation (without material
damping) are "nite in number at a given frequency. This is also the case for the imaginary
eigenvalues. Thus, the corresponding eigenmodes cannot themselves form a complete set, in
which to expand an arbitrary cylinder end boundary condition. However, Adem [10] shows
that there are also an in"nite number of complex eigenvalues, rendering a complete set
possible. The prevalence of approximate cylinder waveguide theories among engineers
seems to grow from a lack of awareness of these complex eigenvalues, the dispersion
relation complexity and from the di$culties of simultaneously satisfying the boundary
conditions at the lateral and radial surfaces. These approximations are deliberately used
known as the long rod [11], the Love [9], the Bishop [12], the Kynch [13], the Mindlin and
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Herrmann [14] and the Mindlin and McNiven [15] theories, no matter how ineptly, in
various applications.

In this paper the dispersion relation solution, convergence analysis and comparison with
simple models are the study focus, thus rendering the presentation in Part I [1] more
comprehensive.

2. EIGENMODES AND EIGENVALUES

The axially symmetric and non-torsional part of the dispersion relation for an in"nite
cylinder with radius a (equation (20) in reference [1] or equation (8.2.41) in reference [16]), is
reformulated as (1)
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the dispersion relation (1) is an even function of the axial wave number. To "nd the roots at
a speci"c frequency, initial values are computed, then an iterative method determines the
roots to the desired accuracy.

The initial values are found by a winding integral method or by an asymptotic expansion
of the dispersion relation. Expansion is applied only for large Dk

z
D while the integral method

is used for small and moderate magnitudes with domains partly overlapped to provide
a reliable transition between the methods. Although the integral method can be used for the
whole search region, the technique is tedious and time-consuming, whereas expansion is
more cost e!ective, but feasible only for large Dk

;
D.

After a lengthy but straightforward asymptotic expansion of the transcendental equation
(1), the eigenvalues are approximately
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`

. It is observed that the asymptotic eigenvalues are independent of
frequency and material properties, making it necessary to calculate the set of asymptotic
initial values only once, thus avoiding numerical computations.

The winding integral method is based on the argument principle. That is, the total
argument variation of a meromorphic function around, in the counter clockwise sense,
a closed single path equals 2n times the di!erence between the number of zeros and poles,
counted with multiplicity, within the complex region enclosed by the path. Without
modi"cations, the path is not allowed to pass through any zero or singularity of the
function. The dispersion relation (1) is, however, not ideally suited for the argument
principle, due to the branch points for the square root operator at k

z
"$k
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and
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T
. In order to create a single-valued function, the single domain may be replaced

by a two-sheeted Riemann surface at each branch point. In principle, it is possible to enforce
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the search region to remain within the "rst Riemann sheet, but the discontinuous phase
changes across the branch cuts are, in general, too large to be convenient.

The directions of the branch cuts, radiating from the branch points, are mathematically
arbitrary. The problem is therefore encompassed by excluding a small domain at each
branch point and splitting the remaining search domain into several subdomains. The
square root operator is adaptively de"ned for each subdomain to avoid any branch cut
within the subdomain. In particular, the branch cut in the (k2

(>)
!k2

z
)-domain may be

adapted along the negative or along the positive real axis. For Rk
z
*0, the image branch

cut in the k
z
-domain is a &&hyperbolic'' curve from k

(>)
to #R or to !Ri, respectively.

Likewise for Rk
z
(0, the image goes from !k

(>)
to !Ror to #Ri, respectively.

[Figures 2(a) and (b)]. In particular, a rectangular search domain, enclosing both branch
points for Rk

z
*0, with the sides parallel to the real and imaginary axes is split into 11

subrectangles and two small squares (see Figure 3). Naturally, other splitting con"gurations
and other kinds of search domain, such as circular or triangular shaped, may be used. The
adapted branch cuts for the respective subrectangles are given in Table 1. The di!erent
branch cuts may, at most, alter the sign of $koL

or $koT
, which has no physical

signi"cance. Finally, the argument principle is used to locate, isolate and approximately
determine all the roots within each subrectangle [8]. Each eigenvalue is given by its
multiplicity and the lower left and upper right corners of an optional small rectangle
enclosing the root. Although any value within the small rectangle, such as the centre point,
is applicable as an initial value, the point given by the "rst moment of winding number
integral, k

z0
"(1/2ni) {LR k

z
d[log F (k

z
)], is preferred, where LR is the boundary of the small

rectangle and F is the dispersion relation in a non-dimensional form.
Once the initial values are computed by the asymptotic expansion or the winding integral

method, an iterative method is used to determine the eigenvalues to their desired accuracy.
The Newton}Raphson method is suitable as the partial derivative, with respect to k

z
, of the

dispersion relation can be readily determined. The algorithm is adaptively damped, for
initial values given by the winding integral method, in order to enforce the iterations to
remain within the small initial rectangles. In addition, the quadratic convergence of the
Newton}Raphson method is maintained at multiple roots by a modi"ed iteration
algorithm, [7].
Figure 2. (a) Adapted branch cuts along negtive (dashed) and positive real axis (dotted) for Jk2
(>)
!k2

z
and

(b) resulting branch cuts in k
z
-plane.



Figure 3. Search rectangle split.

TABLE 1

Adapted negative or positive real axis as branch cut in (k2
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Negative or positive real axis as branch cut in (k2
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1}3 Negative Negative
4}8 Positive Negative
9}11 Positive Positive
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A &&quicksort'' routine arranges the axial eigenvalues in an increased spatial attenuation
order, as DTk

z,n
D)DTk

z,m
D; n(m; n, m3Z

`
.

A rapid determination of the eigenvalues, for a range of frequencies, is to perform the
operations above for the "rst frequency, then use the calculated roots as initial values to the
Newton}Raphson method for the second frequency. The eigenvalues for the remaining
frequencies are determined by the Newton}Raphson method using the extrapolated
eigenvalues from the two preceding frequencies as initial values. A more reliable procedure
is to perform the same operations for all frequencies as for the "rst frequency above.
Although this is time-consuming, the operations discount the size of the frequency step.

Next, the procedure above is applied to the actual vibration isolator. The "rst 100
eigenvalues at 50, 250, 500, 1000, 3000, 5000, 8600 and 10000Hz are shown in Figure 4. The
real axes are auto scaled while imaginary axes are "xed in the whole frequency range. The
eigenvalues are plotted as points, with those corresponding to propagating modes
surrounded by circles. Propagating modes do not formally exist for viscoelastic materials
but for elastic materials. Whether a mode is propagating or not is, therefore, deduced from



Figure 4. The "rst 100 axial eigenvalues. Propagating mode (0) and min D Ik
z
D(]); 50}10 000Hz.
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the cut-on frequency for its elastic counterpart, derived by means of the formal replacement
kJ QRkJ .

The number of propagating modes grows rapidly, being 1#0 at 50 Hz, 1#0 at 250 Hz,
2#0 at 500 Hz, 4#0 at 1000 Hz, 10#0 at 3000 Hz, 16#0 at 5000 Hz, 27#0 at 8600 Hz
and 31#1 at 10 000Hz, where x and y in x#y refer to &&axial'' and &&radial'' modes
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respectively. The terms originate from the displacement pattern identi"ed with the
corresponding elastic mode, being essentially axial and radial respectively as Dk

z
DP0`. For

non-vanishing axial eigenvalues the displacement of a given mode generally involves
contributions from both components. In principle, the larger the eigenvalue, the higher the
contributions from the other component. Besides, every axial eigenvalue for viscoelastic
materials are non-zero when fO0. In this connection and for later economy the terms
merely facilitate the classi"cation of the eigenvalue spectra rather than re#ect their precise
literal sense.

The eigenvalues corresponding to the non-propagating modes approach the asymptotic
eigenvalues, given by equation (2), when 1@p3Z

`
, whereas the eigenvalues are somewhat

jumbled for smaller p, as shown in Figure 4. As the frequency increases and Rk
z
*0, the

intermediary eigenvalues advance against the imaginary axis for Ik
z
'0, or distance

themselves from the same for Ik
z
(0. Accordingly, the minimum p for close prediction by

equation (2) increases with increasing frequency, being more than 50 for f*3000Hz.
Consequently, the asymptotic, frequency-independent eigenvalues are of little value for
f*3000Hz and M(100, as M+2p when 1@p3Z

`
.

The non-propagating modes on the lateral surfaces of the cylinder as discussed in section
4 are important. These mode eigenvalues are, for elastic materials, split into complex and
purely imaginary eigenvalues, both modes represent near-"elds, but those for complex
eigenvalues also involve spatially oscillating factors. The eigenvalues for elastic materials
have the additional symmetry k*

z
%k

z
. Consequently, complex eigenvalues occur in fours,

one in each of the four quadrants, whereas the real and imaginary ones occur in pairs. As
energy dissipation in elastic material is impossible, a complex eigenvalue mode must be
augmented with its dual from another quadrant. Consider, for example, a semi-in"nite
cylinder extended in the positive z direction with the lateral surface at z"z

0
, z

0
3R. The

sums of the complex eigenvalue modes in the third and the fourth quadrants represent
semi-in"nite standing waves with vanishing amplitudes as zPR. Likewise, the
corresponding mode sums for the "rst and the second quadrants represent semi in"nite
standing waves for a semi-in"nite cylinder extended in the negative z direction.

Regarding modes with real eigenvalues in in"nite or semi-in"nite cylinders of elastic
materials, the group velocity of these modes may have the opposite sign to the
corresponding phase velocity, that is, (u/k

z
) Lu/Lk

z
(0, occasionally. The sound choice of

the real eigenvalues are those with correct sign of the group velocity. All the eigenvalues
must, however, be used for "nite cylinders. Taking into consideration that all the
eigenvalues for the modes in viscoelastic cylinders are complex for fO0, similar arguments
as above are applicable to those cylinders.

In order to distinguish the mode with the lowest attenuation per unit axial length, the
eigenvalue obeying minDIk

z
D is x-marked in the plots of Figure 4. It is particularly

noteworthy that this eigenvalue mode does not belong to the propagating modes on the
plots at 3000}8600Hz. Nevertheless, this low attenuation radial mode strongly in#uences
the "eld from &2000 to 10000Hz. For frequencies above &8600Hz it is propagating with
the eigenvalue close to the real axis, while below this frequency the mode is
non-propagating close to the imaginary axis. The mode's importance is due to its low
attenuation, but as the real part of the mode's eigenvalue is also small, its axial wavelength is
correspondingly large. The importance of the lowest attenuation mode is also established
by examining its mode coe$cient, being several orders larger than for the propagating
modes. Around and above the cut-on frequency, the sti!ness goes through an
anti-resonance. The eigenvalue with its opposite sign dual is shown in Figure 5, in the range
of 8500}8700Hz. Figure 5(a) shows a three-dimensional graph with the real and imaginary
parts of k

z,1
on the horizontal axis and the frequency on the vertical axis. Figures 5(b) and (c)



Figure 5. (a) Eigenvalue to lowest attenuation mode and its dual; 8500}8700Hz, step 2 Hz. (b) The 3-D graph in
(a) viewed from positive frequency axis. Direction of increasing frequency marked. (c) The 3-D graph in (a) viewed
from positive real axis. Cut-on frequency marked.
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show the same viewed from the positive frequency axis and from the positive real axis
respectively. As the frequency increases in Figure 5(b), the eigenvalue in the "rst quadrant is
transferred to the second quadrant and the one in the third quadrant to the fourth
quadrant. The cut-on frequency is distinct in Figure 5(c).

Finally, a survey of the eigenvalues, showing only those inside the box 0)Rk
z
)2000

and !1000)Tk
z
)1000 m~1, is in Figures 6(a)}(d), in the whole range of 50}10 000 Hz.



Figure 6. (a) A survey of eigenvalues. (b) The 3-D graph in (a) viewed from negative imaginary axis (c) The 3-D
graph in (a) viewed from positive real axis. (d) The 3-D graph in (a) viewed from positive frequency axis.
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Figure 6(a) shows a three-dimensional graph with the real and the imaginary parts of k
z
on

the horizontal axes and the frequency on the vertical axis. Figures 6(b)}(d) show the same
viewed from the negative imaginary, the positive real and the positive frequency axis
respectively. The plots in Figure 4 can be identi"ed as the constant frequency slices of the
graph in Figure 6(a).

The rapid growth of propagating modes is readily seen in Figure 6(b), where the
eigen-value to the "rst propagating mode is distinguishable, as continuously propagating,
having the Rayleigh phase velocity as its short wavelength limit [16], whereas the
neighbouring axial modes have the shear phase velocity as their limit, with one more
noticeable eigenvalue particularly divergent from around 5000Hz.

In Figures 6(c) and (d) the propagating axial modes eigenvalues are shown to deviate
gradually from the real axis as the frequency increases. This is quite contradictory to the
"rst propagating radial mode, with its eigenvalue close to the real axis up to 10 000Hz. This
is not surprising, since the radial mode in this frequency range is rather dependent on the
bulk modulus, which has a vanishing loss factor in the rubber material model, whereas the
loss factor for the shear modulus grows with increasing frequency, causing deviations of the
axial modes.

As expected, none of the eigenvalues intersect the vanishing imaginary part plane in
Figures 6(c) and (d). A mode with Ik

z
"0 implies no attenuation along the axial direction of

the cylinder. This kind of &&super conductivity'' is, however, physically impossible in
viscoelastic materials.
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3. COMPARISON WITH SIMPLER MODELS

Owing to the dispersion relation complexity, the lack of awareness of the complex
eigenvalues for elastic materials plus the di$culties of simultaneously satisfying the
boundary conditions at the lateral and radial surfaces, a number of approximate theories
have been developed for "nite cylinders. In the context of the present theory, these simpler
models contain only a few modes approximating to the current eigenvalue spectra only over
a limited range. Nevertheless, the models have been extensively applied over the years with
particular emphasis on the simplest.

To test the application of the models on the isolator, six of the most interesting theories
are compared to the present theory and measurements. To this end, the material model and
parameters for all the sti!ness models are the same as in section 3.3, equation (54) in
reference [1].

The "rst is the classical long rod model [11] or [16], which assumes that lateral, plane
cross-sections remain plane and lateral, and that uniaxial and uniform stress exists, while
radial expansions and contractions arising from axial stress are neglected. The second, the
Love model [9], extends the long rod by taking into account the radial displacement, thus
exhibiting geometrical dispersion which the long rod does not. However, all six models are
inherently dispersive through the material model used, a physical property which can be
termed material dispersion. The third, the Bishop model [12], extends the Love theory,
including shear stresses due to radial displacements arising from axial stress, predicting two
modes, one propagating and one non-propagating. Bishop's two-mode theory includes
both, while the single-mode theory neglects the latter. The fourth, the Kynch model [13],
extends the Love theory, replacing the Poisson ratio, coupling the axial and radial motions,
to a &&dynamic'' Poisson ratio, which depends on the axial wavelength derived from
a variation technique. The "fth, the Mindlin and Herrmann model [14], assumes speci"c
axial and radial displacements. The method includes corrections for strain and kinetic
energy associated with radial motion, with results identical to the Volterra method of internal
constraints [18]. To enable, for example, the phase velocities to be adjusted for better
agreement with those of Pochhammer and Chree, two frequency-dependent parameters are
introduced. In particular, the "rst mode may be adjusted by the "rst parameter to yield the
Rayleigh phase velocity as a short wavelength limit. Here, both parameters are taken as
unities (that is, no corrections). The sixth, the Mindlin and McNiven [15], extends
the Mindlin and Herrmann theory to an additional mode, expanding the displacements
in terms of Jacobi polynomials to obtain suitable equation systems in the radial
co-ordinate. These possess convenient orthogonal properties through the cylinder
cross-section. The four adjustment parameters of their theory are here taken as unities (that
is, no corrections).

First, the models are applied to a very long isolator; 5000mm long (100 times the
original length) and 50mm radius, where they should coincide. This is also the case
in Figure 7 showing transfer and driving point sti!ness for all the above models
from 1 to 50Hz.

Next the actual isolator is considered. Figures 8 and 9 show the axial dynamic sti!ness.
Figures 9(a)}(d) show the driving point sti!ness with no plates included, while Figures
8(a)}(d) show the transfer sti!ness. The results of the single-mode theories are in
Figures 8(a) and (b) and 9(a) and (b), while those of the two- and three-modes theories
are in Figures 8(c) and (d) and 9(c) and (d). For comparison, the results of the present
theory are shown as thick solid line whilst the measurements are shown as dashed line.
The upper frequency is limited to 1000Hz as the simple models are most suitable in this
frequency range.



Figure 7. Magnitude of (a) transfer and (b) driving point sti!ness for a 5000 mm long isolator (100]l). Present,
long-rod, Love, Bishop 1-mode, Bishop 2-mode, Mindlin and Herrmann, Kynch and Mindlin and McNiven
theory (all in solid lines).

Figure 8. Transfer sti!ness. (a) and (b) Present theory ( ), measurement (}}}}), long-rod theory (**), Love
theory () ) ) ) )), Bishop 1-mode theory (} ) } ) }); (c) and (d) Present theory ( ), measurement (}}}}), Mindlin and
Herrmann theory, Bishop 2-mode theory, Kynch theory and Mindlin and McNiven theory (} ) ) }).
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Figure 9. Driving point sti!ness. (a) and (b) Present theory ( ), long-rod theory (**), Love theory ( ) ) ) ) )),
Bishop 1-mode theory (} )} )} )}); (c) and (d) present theory ( ), Mindlin and Herrmann theory, Bishop 2-mode
theory, Kynch theory and Mindlin and McNiven theory (} ) )}).
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The approximate methods fail to model the sti!ness satisfactorily. In single-mode
theories, there is a systematic underestimation of the sti!ness at frequencies below 200Hz,
since only the axial displacement boundary conditions are ful"lled. The plates radial
constraining e!ects are, therefore, neglected. The two- and three-modes theories satisfy
the boundary conditions but, nevertheless, slightly overestimate the sti!ness in the
low-frequency range.

The long rod model predicts the "rst anti-resonance frequency for transfer sti!ness and
the "rst resonance and the "rst anti-resonance frequencies for driving point sti!ness fairly
well, although those point magnitudes and the remaining curve are poorly predicted. The
Love model overestimates the lateral inertia e!ects, so the mode becomes non-propagating
with meagre sti!ness predicted above 200 Hz. The single-mode Bishop model overcomes
the defect of the overestimation, with results between those of the Love and long rod
theories.

The results of the Bishop two-mode, the Kynch, the Mindlin and Herrmann and the
Mindlin and McNiven examples coincide within the frequency range considered. These
two- and three-mode theories estimate the "rst resonance frequency for the driving point
sti!ness very well but the sti!ness, in line with the one-mode theories, is incorrectly
predicted. By adjusting the "rst mode of the Mindlin and Herrmann theory to yield the
Rayleigh phase velocity as a short wavelength limit (not shown), gives almost the same
sti!ness results as without adjustments.

The present work is more elaborate than earlier theories, and the results are very close to
the measurements whereas the approximate theories fail in this light.
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4. CONVERGENCE PROPERTIES OF THE SOLUTION

In order to fully accept the method, the convergence of the solution is examined. To this
end, the number of collocation radii and modes is extended; that is (using the notations of
section 2 in reference [1]), the P1

r
-, P1

z
-, P2

r
-, P2

z
- and the M-convergence of the solution is

veri"ed by their respective extensions. The extension technique, although in other contexts,
is frequently applied in "nite element methods, as described by SzaboH and Babus\ ka [19].
Since this paper aims mainly at dynamic sti!ness, the convergence of this global quantity is
examined.

The M-extension is processed by calculating the sti!ness for M"2n, n"1, 2,2, 7, by
point matching with equidistant collocation radii. Inasmuch as P1

r
#P1

z
#P2

r
#P2

z
*2M,

the number of collocation radii is concurrently extended according to P1
r
"P1

z
"

P2
r
"P2

z
"M/2. The frequency range considered is 50}1000Hz with the results shown in

Figures 10 and 11.
Figures 11(a)}(c) show the driving point sti!ness, with no plates included, while Figures

10(a)}(c) show the transfer sti!ness. Although the sti!ness deviates signi"cantly for small M,
Figure 10. Transfer sti!ness. (a) M"128 ( ), M"8 (**), M"4 (} )} )} ), M"2 ( ) ) ) ) ) ); (b) M"128 ( ),
M"64 (**), M"32 (} )} )}), M"16 ( ) ) ) ) )); (c) M"128, M"64, M"32 (solid), M"16 ( ) ) ) ) )).



Figure 11. Driving point sti!ness. (a) M"128 ( ), M"8 (**), M"4 (} )} )} )), M"2 ( ) ) ) ) )); (b) and (c)
M"128 ( ), M"64 (**), M"32 (} )} )}), M"16 ( ) ) ) ) )).
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it converges for larger M. The di!erence between M"64 and 128 results is negligible from
an engineering point of view.

Although the importance of large M modes declines, they are, nevertheless, important at
moderate M. Physically, these moderately high order modes contribute to the ful"lment of
the displacement boundary conditions. The "elds at these lateral surfaces in turn determine
the dynamic sti!ness, which is substantially in#uenced by these higher order modes, as
shown clearly in Figures 10 and 11.

In a similar manner, the separate P1
r
-, P1

z
-, P2

r
- and P2

z
-convergences of the solution are

established. First, the sti!ness is calculated for P1
r
#P1

z
#P2

r
#P2

z
"2M, and then the

P(>)
(>)
-extension is performed. The number of the modes and other radii are constant, with the

results analogous to those of the M-extension.
To further study the convergence properties of the solution, the completion level of the

displacement boundary conditions equations (15) and (16) in reference [1] is investigated.
A simple measure of this completion is the displacement residual variance, normalized with
the excitation and is suitable in a practical engineering environment, de"ned as



Figure 12. Normalized standard deviation of displacement residual. M indicated at each curve.
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p2
1
"

1

Ed3 E2
2
S PL1

d
B

Eu8 !d3 E2
2
dS (3)

p2
2
"

1

EdE2
2
S PL2

d
B

EuE2
2
dS (4)

using the notations of section 2 in reference [1]. The corresponding standard deviations are
calculated with the M-extensions above. The results in Figure 12 clearly show the residual
decreases as M increases. The sections of the greatest deviations are located nearby the
anti-resonances.

In general, derivative operators ruin the convergence. Thus, the dynamic sti!ness is
believed to converge slowly as the axial stress required for the sti!ness derivation is
determined by the spatial derivatives of the displacements. Surprisingly, the convergence
rate of the sti!ness is rather high (as shown in Figures 10 and 11 and discussed above) due
mainly to the additional spatial integration of the axial stress (according to equations (18)
and (19) in reference [1]). Physically, the integration averages the "eld and to a great extent
cancels out erroneous oscillating terms.

In order to obtain the local quantities, such as displacement and stress, with acceptable
accuracy, the errors must be further reduced. A natural choice is to increase the re"nement
by increasing the number of equidistant collocation radii. In particular, the standard
deviation of the displacement discrepancy at 1000 Hz and with M"128 is calculated. The
total number of equidistant collocation radii used is 4]64, 4]128, 4]256, 4]512, 4]
1024, 4]2048 and 4]4096. That is, the equation system is exactly determined, 1-, 3-, 7-, 15-,
31- and 63-fold overdetermined. The results are in Figure 13. The standard deviation drops
instantaneously at single-fold overdetermination but levels o! rather promptly. The almost
constant deviation for higher order overdeterminations, though small, is mainly due to the
truncation of the highest order modes; M'128.



Figure 13. Normalized standard deviation versus total number of collocation radii. M"128, 1000Hz.
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Additional re"nement patterns, such as with enhanced re"nement close to r"a, were
tested but the former method seems to be the most suitable.

To investigate the local e!ects of overdetermination and mode number increase, the
stresses and displacements are calculated at z"l/2 at 1000Hz. First, the equation system is
exactly determined with M"128. Then it is overdetermined three-fold with M"512. The
results are in Figures 14. Figure 14(a) shows the magnitude of the axial displacement while
Figure 14(b) the corresponding radial displacement. Likewise, the magnitude of the axial
stress is in Figure 14(c) with the radial shear stress in Figure 14(d). All results are normalized
with the excitation Dd3 D.

In Figures 14(a) and (b), the displacements with M"128 oscillate strongly, whereas those
with M"512 almost vanish, the amplitudes of the oscillations are, however, small, in
general being less than 0)015. The rather high standard deviation of 4)83]10~2 with
M"128 (shown in Figure 13) is mainly attributed to a poorer ful"lment of the boundary
condition at z"!l/2. The convergence destroying e!ects of the spatial derivative
operators are clearly shown in Figures 14(c) and (d). The stresses with M"128 oscillate
very strongly whereas those with M"512 behave smoothly. At r"a and with M"512
the axial stress is large. This point is singular. Likewise, close to r"a and with M"512, the
radial shear stress oscillates slightly but vanishes at r"a.

The standard deviation is reduced from 4)83]10~2 with M"128 to 1)34]10~3 with
M"512. The magnitude and the phase of the transfer sti!ness are altered from
4)82]105 N/m2 and !1463 to 4)86]105 N/m2 and !1463. Likewise, the driving point
sti!ness is altered from 5)62]106 N/m2 and 1633 to 5.61]106 N/m2 and 1633. Hence, the
sti!ness is hardly changed. The mode coe$cients with M"128 and 512 in Figure 15
coincide up to n+200, where D

n
is such that D

2n~1
"D`

n
and D

2n
"D~

n
(using the

notations of section 2 in reference [1]). The ensuing M"128 tail increase, though small,
results from its truncated higher order mode compensation.

Next, the subregion method is considered with the M-extension above. Clearly, the
subregion standard deviation in Figure 16 decreases faster, while the sti!ness in Figure 17



Figure 14. Magnitude of mechanical "elds at z"l/2. Exactly determined & M"128 (thin) and threefold
overdetermined & M"512 (thick); 1000Hz. Normalized (a) axial displacement, (b) radial displacement, (c) axial
stress and (d) radial shear stress.

Figure 15. Magnitude of mode coe$cient. Exactly determined and M"128 and three-fold overdetermined and
M"512; 1000Hz.
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shows a higher convergence rate than for the point matching. This discrepancy diminishes,
however, at over-determination, which is not surprising as its e!ects are similar to those of
the subregion spatial integration.



Figure 16. Normalized standard deviation of displacement residual versus total number of modes. Point
matching ("lled circles) and subregion method (circles); 1000Hz.

Figure 17. Sti!ness versus total number of modes. Point matching ("lled circles) and subregion method (circles);
1000Hz. (a) and (b) Transfer sti!ness; (c) and (d) driving point sti!ness.
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5. DISPLACEMENT AND STRESS FIELDS

The model governed "elds, throughout the rubber cylinder (r"0 to a and z"!l/2 to
z"#l/2) for a wide frequency range are alternative assessments of the present model's
relation to the simpler models discussed in section 3. The normalised magnitude of axial
and radial displacement, calculated by point matching, using equidistant collocation radii,
P1
r
"P1

z
"P2

r
"P2

z
"512 and M"256, are shown in Figures 18 and 19, respectively, in

the frequency range of 50}10000 Hz together with auto scaled grey bars for enhanced
perceptional clarity, whereas axial and radial shear stress at 1000Hz are in Figure 20.
Clearly, the traction and displacement boundary conditions are satis"ed, the radial
displacement and radial shear stress vanishing at zero radius while the singular behaviour
of axial stress rapidly diminishes outside (r"a, z"!l/2) and (r"a, z"#l/2) though it
is noticeable only at (r"a, z"!l/2) in Figure 20, while being displayed at (r"a,
z"#l/2) in Figure 14(c). The non-uniform displacement pattern in the cylinder
cross-section at 50Hz, arises mainly from the "rst propagating mode contortion with
a pervading emphasis at 250Hz, showing a disordered axial displacement close to the free
rubber surface which eventually develops a Rayleigh surface wave at higher frequencies.
Thus, the diminishing classical rod theory accuracy is already evident at 50Hz.

Higher order propagating modes in#uence the total "eld above 250 Hz; the sti!ness is, in
addition, intensely in#uenced by higher order non-propagating modes, as discussed in
section 4.

In the context of classical theory, the axial wave length at the "rst driving point resonance
equals four cylinder lengths while equalling two at the "rst transfer anti-resonance. The
latter has a uniform anti-node in the central cylinder cross-section. but is non-uniformly
disordered in Figure 18 (500Hz) and jointly displays a moderate radial displacement
pattern, which in turn magni"es the transfer sti!ness to a lesser extent than the
corresponding long rod theory at &500 Hz in Figure 8(a). In principle, the two ensuing
transfer anti-resonances, though not present in the simplest models, are similarly explained,
displaying non-uniform anti-nodes near the central cross-section, as in Figure 18 (600Hz)
for the second anti resonance.

The axial displacement shows a slightly disturbed &&lumped'' behaviour at 5000Hz in
Figure 18, while displaying a slightly disturbed wave characteristic at 10 000Hz. The radial
displacement "elds in Figure 19 (5000 and 10 000 Hz) are in#uenced by the propagating
modes, showing a strong axial dependence.

The mainly cylinder length independent anti-resonance at 8600Hz is of particular
interest and complexity, governing prodigious displacements in Figures 18 and 19, thereby
increasing the total mode number for accurate displacement boundary condition ful"lment.
In particular, M surpassed 200 (in section 3 in reference [1]) to limit the sti!ness error (from
an engineering point of view) to an acceptable level.

6. CONCLUSIONS

The dispersion relation solution, convergence analysis and comparison with simple
models are extensively presented. Thus providing comprehensive information about the
waveguide model for the dynamic isolator sti!ness developed in a companion paper [1].

The dispersion relation eigenvalues are successfully calculated by a modi"ed
Newton}Raphson method to any desired accuracy with initial values given by an
asymptotic expansion or a winding integral method. The winding integral search domain is
split into branch-cut absent subdomains containing adaptively de"ned square root



Figure 18. Magnitude of normalized axial displacement; 50}10000 Hz.
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operators. The somewhat complicated eigenvalue spectrum result displays a rapidly
growing axial propagating mode number, while the "rst radial mode cut-on frequency is
high, mainly due to the rubber material, and can be modelled as nearly incompressible with
deviatoric viscoelasticity.



Figure 19. Magnitude of normalized radial displacement; 50}10000 Hz.

WAVEGUIDE MODELLING OF DYNAMIC STIFFNESS-II 255
The displacement boundary conditions at the rubber cylinder ends are satis"ed by
a circle-wise ful"lment or a subregion method. The latter reveals a higher convergence rate,
but shows a similar rate as the former at overdetermination. In general, a moderate total
mode number, such as M"64, results in an accurate sti!ness while point values of
displacement and stress need more modes in addition to properly adapted radii, where



Figure 20. Magnitude of normalized stress; 1000 Hz.
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overdetermined equidistant collocation is shown to be su$cient. These "elds display
essential spatial dependence with strong near-"elds on lateral end surfaces, which are not
accounted for in approximate theories, explaining the discrepancies reported in these
models.
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